
Solid server – Proposed architecture v1.1.0 (status: superseded)
Ruben Verborgh – July 14, 2019

Purpose

This document conveys a personal view on important architectural considerations for a Solid server.
It is intended as a tool for discussion, to raise questions, and to highlight concerns.
It does not have any official standing whatsoever.

Legend

The architectural diagram follows standard UML notation.
For more specific symbols that are not part of UML, Node.js/JavaScript/TypeScript conventions were used as follows:

T? represents a value that is either not present or a value of type T.

Promise<T> represents a value that will asynchronously resolve to a value of type T.

Readable<T> represents an asynchronous one-time readable stream of values of type T.

Buffer is an in-memory buffer of bytes, possibly with a character encoding.

1

Overview of LDP and Access Control

HTTP

LDP

Storage

Authentication

Authorization

Operations

*

1

creates

*

creates

1
creates

1
writes

1

creates

1

1

creates

uses

1

1

�interface�
HttpHandler

+ canHandle(HttpRequest) : Promise<boolean>
+ handle(HttpRequest, HttpResponse) : void

HttpServer

+ HttpServer(Array<HttpHandler>)
+ listen(port : int) : void
+ handle(HttpRequest, HttpResponse) : void

LdpHandler

+ LdpHandler(OperationFactory)

TargetExtractor ResourceIdentifier

BodyParser Representation Patch

PreferenceParser RepresentationPreferences

ResponseWriter HttpResponse

OperationFactory

+ OperationFactory(ResourceStore)
+ createOperation(method : string, ResourceIdentifier,
RepresentationPreferences, . . .) : Operation

�interface�
Operation

+ target : ResourceIdentifier
+ requestBody : Representation?
+ preferences : RepresentationPreferences
+ requiredPermissions : PermissionSet

+ execute() : Promise<ResponseDescription>

GetOperation

PostOperation

PutOperation

PatchOperation

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation) : Promise<void>
+ deleteResource(ResourceIdentifier) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch) : Promise<void>

�interface�
CredentialsExtractor

+ extractCredentials(HttpRequest) : Promise<Credentials>

Credentials

�interface�
Authorizer

+ hasPermissions(Credentials, ResourceIdentifier,
PermissionSet) : Promise<boolean>

AclBasedAuthorizer

2

Resources and Representations

The intention of ResourceIdentifier and Representation is to capture the
REST notion of a resource and its representation. In the case of a photograph, the
resource is the photograph itself, whereas a representation is a concrete mani-
festation of that photograph with a certain resolution and file type. In the case of
an RDF document, the resource is the RDF graph, and concrete representations
serialize that graph into Turtle or specific framings of JSON-LD.

For all practical purposes, ResourceIdentifier can just be a URL; the terminol-
ogy is mainly used to emphasize the resource/representation notion of REST.
Also, there is no Resource class, because resources are always manipulated
through representations in REST, so we only need to identify resources, and
only deal with them through their representations.

Crucially, as the diagram below shows, the Representation interface can
have vastly different underlying in-memory structures, such as strings, binary
streams, RDF streams, etc. So they can be photographs as well as RDF streams,
and most other classes handling them do not need to care. This enables back-
ends to be RDF-aware when they need to, and RDF-oblivious when they do not.

0..1

1

�interface�
Representation

+ identifier : ResourceIdentifier?
+ metadata : RepresentationMetadata
+ data : Readable<Object>
+ dataType : String

�interface�
ResourceIdentifier

�interface�
RepresentationMetadata

+ raw : Array<Quad>
+ byteSize : int?
+ contentType : String?
+ encoding : String?
+ language : String?
+ dateTime : Date?
+ profiles : Array<String>

BinaryRepresentation

+ data : Readable<Buffer>

QuadRepresentation

+ data : Readable<Quad>

The dataType field returns the name of the class that elements of the data
readable stream will have, for instance, Buffer or Quad.

Based on the dataType and metadata fields, other components can decide
whether or not the representation is acceptable to the user agent, and, if this is
not the case, convert to a format that is. For instance, a text/turtle stream is
acceptable for a user agent that requested text/*, whereas a Readable<Quad>
will still require serialization.

The RepresentationMetadata interface essentially exposes a set of RDF
triples that describe properties about the representation. For convenience,
direct getters to common properties can be added, non-binding examples of
which are shown in the diagram.

3

ResourceStore

1

*

*

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation) : Promise<void>
+ deleteResource(ResourceIdentifier) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch) : Promise<void>

FileSystemStore

- ResourceMapper mapper

�interface�
ResourceMapper

+ mapFilePathToUrl(File): Promise<{URL, RepresentationMetadata}>
+ mapUrlToFilePath(URL, RepresentationMetadata): Promise<File>

KeyValueStore

get(ResourceIdentifier) : Promise<BinaryRepresentation>
replace(ResourceIdentifier, BinaryRepresentation) : Promise<void>
delete(ResourceIdentifier) : Promise<void>

RedisStore

CassandraStore

TripleStore

+ getRepresentation(. . .) : Promise<QuadRepresentation>

SparqlEndpointStore

- endpoint: URL

RepresentationConvertingStore

- source : ResourceStore
- converters : Array<RepresentationConverter>

�interface�
RepresentationConverter

+ supports(Representation, RepresentationPreferences): Promise<boolean>
+ convert(Representation, RepresentationPreferences): Promise<Representation>

CompositeResourceStore

- sources : Map<UrlPattern, ResouceStore>

A ResourceStore will try to satisfy any RepresentationPreferences passed
to it, but only if this is reasonably easy for the store in question. For instance,
a SPARQL endpoint can typically generate N-Triples as easily as Turtle, so it
makes sense to directly generate N-Triples if the client prefers this. On the other
hand, a file system will typically only have one representation on disk, so it is
fine to always serve that single representation, regardless of client preferences.

Optionally, a RepresentationConvertingStore can be used to satisfy client
preferences more accurately. It has access to RepresentationConverter in-
stances, which could (for instance) convert a stream of quads into Turtle or
a specific JSON-LD frame. It can decorate any existing ResourceStore to
extend it with more kinds of representations such as different content types.

A CompositeResourceStore can be used to have multiple back-ends on one
pod, each answering to different URL patterns. This mechanism could be used
also to serve large files like images, or static assets such as apps or scripts.

4

Patch

A Patch contains a description of changes to be made to a certain (represen-
tation of a) resource. The Patch object itself does not know how to apply this
patch; it is merely a data object.

�interface�
Patch

LineBasedPatch

+ deletions : Map<int, string>
+ additions : Map<int, string>

GraphPatternPatch

+ where : Array<QuadPattern>
+ delete : Array<QuadPattern>
+ insert : Array<QuadPattern>

BinaryPatch

ImageFilter

A ResourceStore might have knowledge on how to apply certain types of
patches itself. For instance, file-based stores might have built-in support for
LineBasedPatch, and SPARQL endpoints or in-memory RDF stores likely have
built-in support for GraphPatternPatch.

There is case to be made for a Patcher interface for objects that can apply all
patches of a certain type to certain representations. For instance, a Graph-
PatternPatch could be applied to RDF graphs serialized as documents, by
a GraphPatternPatcher that operates independently of any specific store.

5

