
Solid server – Selected architectural diagrams v1.2.0 (status: proposal)
Ruben Verborgh – August 21, 2020

Purpose

This document conveys views on important architectural considerations for a Solid server.
It is mainly intended as a tool for discussing, raising questions, and highlighting concerns.

Legend

The architectural diagram follows standard UML notation.
For more specific symbols that are not part of UML, Node.js/JavaScript/TypeScript conventions were used as follows:
T? represents a value that is either not present or a value of type T.
Promise<T> represents a value that will asynchronously resolve to a value of type T.
Readable<T> represents an asynchronous one-time readable stream of values of type T.
Buffer is an in-memory buffer of bytes, possibly with a character encoding.

1

Overview of LDP and Access Control

HTTP

LDP

Storage

Authentication

Authorization

Operations

*

1

creates

*

creates

1
creates

1
writes

1

creates

1

1

creates

uses

1

1

�interface�
HttpHandler

+ canHandle(HttpRequest) : Promise<boolean>
+ handle(HttpRequest, HttpResponse) : void

HttpServer

+ HttpServer(Array<HttpHandler>)
+ listen(port : int) : void
+ handle(HttpRequest, HttpResponse) : void

LdpHandler

+ LdpHandler(OperationFactory)

TargetExtractor ResourceIdentifier

BodyParser Representation Patch

PreferenceParser RepresentationPreferences

ResponseWriter HttpResponse

OperationFactory

+ OperationFactory(ResourceStore)
+ createOperation(method : string, ResourceIdentifier,
RepresentationPreferences, . . .) : Operation

�interface�
Operation

+ target : ResourceIdentifier
+ requestBody : Representation?
+ preferences : RepresentationPreferences
+ requiredPermissions : PermissionSet

+ execute() : Promise<ResponseDescription>

GetOperation

PostOperation

PutOperation

PatchOperation

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences, Conditions?) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation, Conditions?) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation, Conditions?) : Promise<void>
+ deleteResource(ResourceIdentifier, Conditions?) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch, Conditions?) : Promise<void>

�interface�
CredentialsExtractor

+ extractCredentials(HttpRequest) : Promise<Credentials>

Credentials

�interface�
Authorizer

+ ensurePermissions(Credentials, ResourceIdentifier,
PermissionSet) : Promise<void>

AclBasedAuthorizer

2

Resources and Representations

The intention of ResourceIdentifier and Representation is to capture the
REST notion of a resource and its representation. In the case of a photograph, the
resource is the photograph itself, whereas a representation is a concrete mani-
festation of that photograph with a certain resolution and file type. In the case of
an RDF document, the resource is the RDF graph, and concrete representations
serialize that graph into Turtle or specific framings of JSON-LD.

For all practical purposes, ResourceIdentifier can just be a URL; the terminol-
ogy is mainly used to emphasize the resource/representation notion of REST.
Also, there is no Resource class, because resources are always manipulated
through representations in REST, so we only need to identify resources, and
only deal with them through their representations.

Crucially, as the diagram below shows, the Representation interface can
have vastly different underlying in-memory structures, such as strings, binary
streams, RDF streams, etc. So they can be photographs as well as RDF streams,
and most other classes handling them do not need to care. This enables back-
ends to be RDF-aware when they need to, and RDF-oblivious when they do not.

0..1

1

�interface�
Representation

+ identifier : ResourceIdentifier?
+ metadata : RepresentationMetadata
+ data : Readable<Object>
+ dataType : String

�interface�
ResourceIdentifier

�interface�
RepresentationMetadata

+ raw : Array<Quad>
+ byteSize : int?
+ contentType : String?
+ encoding : String?
+ language : String?
+ dateTime : Date?
+ profiles : Array<String>

BinaryRepresentation

+ data : Readable<Buffer>

QuadRepresentation

+ data : Readable<Quad>

The dataType field returns the name of the class that elements of the data
readable stream will have, for instance, Buffer or Quad.

Based on the dataType and metadata fields, other components can decide
whether or not the representation is acceptable to the user agent, and, if
this is not the case, convert to a format that is. For instance, a text/turtle
stream is acceptable for a user agent that requested text/*, whereas
a Readable<Quad> will still require serialization.

The RepresentationMetadata interface essentially exposes a set of RDF
triples that describe properties about the representation. For convenience,
direct getters to common properties can be added, non-binding examples of
which are shown in the diagram.

3

ResourceStore implementations

1

*

*

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences, Conditions?) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation, Conditions?) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation, Conditions?) : Promise<void>
+ deleteResource(ResourceIdentifier, Conditions?) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch, Conditions?) : Promise<void>

FileSystemStore

- ResourceMapper mapper

�interface�
ResourceMapper

+ mapFilePathToUrl(File): Promise<{URL, RepresentationMetadata}>
+ mapUrlToFilePath(URL, RepresentationMetadata): Promise<File>

KeyValueStore

get(ResourceIdentifier) : Promise<BinaryRepresentation>
replace(ResourceIdentifier, BinaryRepresentation) : Promise<void>
delete(ResourceIdentifier) : Promise<void>

RedisStore

CassandraStore

TripleStore

+ getRepresentation(. . .) : Promise<QuadRepresentation>

SparqlEndpointStore

- endpoint: URL

RepresentationConvertingStore

- source : ResourceStore
- converters : Array<RepresentationConverter>

�interface�
RepresentationConverter

+ supports(Representation, RepresentationPreferences): Promise<boolean>
+ convert(Representation, RepresentationPreferences): Promise<Representation>

CompositeResourceStore

- sources : Map<UrlPattern, ResourceStore>

A ResourceStore will try to satisfy any RepresentationPreferences passed
to it, but only if this is reasonably easy for the store in question. For instance,
a SPARQL endpoint can typically generate N-Triples as easily as Turtle, so it
makes sense to directly generate N-Triples if the client prefers this. On the other
hand, a file system will typically only have one representation on disk, so it is
fine to always serve that single representation, regardless of client preferences.

Optionally, a RepresentationConvertingStore can be used to satisfy client
preferences more accurately. It has access to RepresentationConverter in-
stances, which could (for instance) convert a stream of quads into Turtle or
a specific JSON-LD frame. It can decorate any existing ResourceStore to
extend it with more kinds of representations such as different content types.

A CompositeResourceStore can be used to have multiple back-ends on one
pod, each answering to different URL patterns. This mechanism could be used
also to serve large files like images, or static assets such as apps or scripts.

4

ResourceStore atomicity and conditional requests

uses

1

1

creates

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences, Conditions?) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation, Conditions?) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation, Conditions?) : Promise<void>
+ deleteResource(ResourceIdentifier, Conditions?) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch, Conditions?) : Promise<void>

Conditions

+ matchesEtag : string[]
+ notMatchesEtag : string[]
+ modifiedSince: date?
+ unmodifiedSince: date?

+ matches(metadata : RepresentationMetadata): boolean
+ matches(eTag : string?, lastModified : date?): boolean

�interface�
AtomicResourceStore

LockingResourceStore

- ResourceStore source
- ResourceLocker locks

�interface�
ResourceLocker

+ acquire(ResourceIdentifier) : Promise<Lock>

�interface�
Lock

+ release() : Promise<void>

The ResourceStore interface has been designed such that each of its methods
can be implemented in an atomic way: for each CRUD operation, only one
dedicated method needs to be called. A fifth method enables the optimization
of partial updates with PATCH. It is up to the implementer of the interface to
(not) make an implementation atomic. For some implementations, such as triple
stores or other database back-ends, atomicity is a given. We could explicitly
indicate atomicity by having such implementations implement the (otherwise
empty) AtomicResourceStore interface as a tag.

Some back-ends are not atomic by themselves, such as a file system, where
a read+append sequence could unknowingly be interrupted by a write that
thereby breaks atomicity. Instead of having to implement a dedicated locking
mechanism for every non-atomic back-end, these stores can be made atomic
by decorating them with a LockingResourceStore. This class wraps another
ResourceStore and adds a locking mechanism, of which different implementa-
tions can exist.

It is important to emphasize that atomicity is not the only reason for the design
of the ResourceStore interface. Another consideration is modifyResource,
which allows us to optimize modifications in a backend-specific way. Since we
expect small modifications to larger resources to be a common for Solid apps,
we need to be able to handle those efficiently. modifyResource gives implemen-
tations the freedom on how to apply patches, such that they can pick whichever
option is most efficient for a given patch and, if desired, support atomicity.

The Conditions class represents the conditions of an HTTP conditional request.
It is passed to all write methods (and possibly also read) of ResourceStore.
The store is responsible for validating conditions at the right moment and, should
validation fail, for aborting the modification by throwing an error.

If the store knows how to validate conditions, it can use the raw exposed fields
on Conditions. If it does not, it can call modifyResource with both ETag and
the last modified date, or try one of them before the other. Finally, if it knows
about neither ETag nor last modified date, it can pass the metadata as a whole.

The conditions argument is optional, and only passed for conditional requests.
If a store decides not to support conditional requests, it must throw an error
if conditions are passed.

5

Patch

A Patch contains a description of changes to be made to a certain (represen-
tation of a) resource. The Patch object itself does not know how to apply this
patch; it is merely a data object.

�interface�
Patch

LineBasedPatch

+ deletions : Map<int, string>
+ additions : Map<int, string>

GraphPatternPatch

+ where : Array<QuadPattern>
+ delete : Array<QuadPattern>
+ insert : Array<QuadPattern>

BinaryPatch

ImageFilter

A ResourceStore might have knowledge on how to apply certain types of
patches itself. For instance, file-based stores might have built-in support for
LineBasedPatch, and SPARQL endpoints or in-memory RDF stores likely have
built-in support for GraphPatternPatch.

There is case to be made for a Patcher interface for objects that can ap-
ply all patches of a certain type to certain representations. For instance,
a GraphPatternPatch could be applied to RDF graphs serialized as documents,
by a GraphPatternPatcher that operates independently of any specific store.

6

Quota

uses

1

1

AdministrationApi

�interface�
HttpHandler

�interface�
SizeReporter

+ getSize(ResourceIdentifier) : Promise<Number>

SizeCache

- source : ResourceStore
- reporter : SizeReporter

�interface�
ResourceStoreFileSystemStore

Storage quota can be retrieved through the AdministrationApi, which is an
independent HttpHandler that accesses a SizeReporter. The SizeReporter
interface can be implemented by stores such as FileSystemStore.

Since computing quota can be expensive, a SizeCache could maintain quota
for subpaths, which it invalidates upon write operations.

7

ACL caching

uses

1

AclBasedAuthorizer

- source : AclCache

+ ensurePermissions(Credentials, ResourceIdentifier,
PermissionSet) : Promise<void>

AclCache

- source : ResourceStore

�interface�
ResourceStore

Since ACLs will be used frequently, we need a mechanism for caching them.
Importantly, we need a way to invalidate the cache every time a write operation
happens to ACLs that can affect a given document.

To this end, the AclCache will wrap around a ResourceStore and intercept
all write requests, such that it can invalidate parts of its cache when writes to
ACL documents arrive.

8

