
Solid server – Store atomicity (status: obsolete)
Ruben Verborgh – August 13, 2019

ResourceStore and atomic operations

1
1

creates

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation) : Promise<void>
+ deleteResource(ResourceIdentifier) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch) : Promise<void>

�interface�
AtomicResourceStore

LockingResourceStore

- ResourceStore source
- ResourceLocker locks

�interface�
ResourceLocker

+ acquire(ResourceIdentifier) : Promise<Lock>

�interface�
Lock

+ release() : Promise<void>

The ResourceStore interface has been designed such that each of its methods
can be implemented in an atomic way: for each CRUD operation,1 only one dedi-
cated method needs to be called. It is up to the implementer of the interface to
(not) make an implementation atomic. For some implementations, such as triple
stores or other database back-ends, atomicity is a given. We could explicitly
indicate atomicity by having such implementations implement the (otherwise
empty) AtomicResourceStore interface as a tag.

Some implementations are not atomic by default, such as a file system, where
a read+append sequence could unknowingly be interrupted by a write that
thereby breaks atomicity. Such non-atomic stores could be made atomic by
decorating them with a LockingResourceStore. This class wraps another
ResourceStore with a locking mechanism, which can be implemented in differ-
ent ways. An example method implementation is listed on the right.

async function modifyResource(id, patch) {
const lock = await this._locks.acquire(id);
try { return await this._source.modifyResource(id, patch); }
finally { await lock.release(); }

}

Design considerations

It is important to emphasize that atomicity is not the only reason for the design
of the ResourceStore interface. The other consideration is in the 5th method
modifyResource, which allows us to optimize modifications in a backend-
specific way. Since we expect small modifications to larger resources to be
a common pattern for Solid apps, we need to be able to handle those efficiently.

A simpler implementation with 4 methods could support PATCH as follows:
1. call getRepresentation
2. apply the patch
3. call setRepresentation

However, in addition to violating atomicity (or requiring another locking mecha-
nism), it would also give suboptimal results when the resource is large and the
patch is just a single triple. Moreover, it would be unnecessarily complex and
slow for the case of triple stores, which support patches natively.

In contrast, modifyResource gives implementations the freedom on how to
apply patches, such that they can pick whichever option is most efficient for
a given patch and, if desired, support atomicity.

ResourceStore and conditional requests

With the above, we have established that ResourceStore:
• supports all CRUD requests;
• can support all types of patches efficiently;
• support atomicity (regardless of native support by the back-end).

However, the proposed mechanism does not support conditional HTTP requests
(RFC 7232), which must be aborted if the resource prior to modification does
not satisfy certain conditions. These are not supported because:

• ResourceStore cannot abort, because it does not know the conditions.
• Callers of ResourceStore know the conditions, but they cannot check

them in an atomic way, since they would not be able to prevent modifica-
tions in between the getRepresentation call for checking the conditions,
and the subsequent modification call.

Hence, we explore three different extensions to the architecture that aim to
support conditional requests, and analyze their properties.

1There are 5 operations rather than 4 because we distinguish between full representations update for PUT and partial updates for PATCH.

1



Approach 1 to conditional requests: transactions

creates

�interface�
ResourceStore

+ createTransaction(ResourceIdentifier) : Promise<ResourceTransaction>

�interface�
ResourceTransaction

+ getRepresentation(RepresentationPreferences) : Promise<Representation>
+ addResource(Representation) : Promise<ResourceIdentifier>
+ setRepresentation(Representation) : Promise<void>
+ deleteResource() : Promise<void>
+ modifyResource(Patch) : Promise<void>
+ release() : Promise<void>

Description

The original ResourceStore methods are moved into a ResourceTransaction
interface, which gets an additional release method to end the transaction. The
caller becomes responsible for steering the atomicity (but the implementation
remains with the ResourceStore).

Implementations do not need to be (and likely would not be) actual transactions,
in the sense that operations do not need to be buffered until the very end when
release is called. They rather can function as locks/semaphores that guarantee
no other operations can happen in the meantime.

Analysis

Additional knowledge required by existing components:
• The caller knows how to validate request conditions.
• Every ResourceStore implementation must be transaction-aware (or at

least lock-aware), which is not the case for back-ends such as files.
• Callers of ResourceStore must be transaction-aware.

When a conditional request arrives, implementers must:
1. call createTransaction
2. call getRepresentation
3. check the conditions
4. if the conditions are satisfied, call the modification method
5. call release

This comes with a couple of caveats:
• We probably do not want to retrieve the full representation, but only the

metadata (lazy loading can do that).
• It might result in the representation (or its metadata) being loaded twice:

once by the caller when getting the representation, and once by the
store internally when performing the modification. (The transaction can,
however, cache this.)

• It assumes that getRepresentation succeeds, which might not be the
case for append-only stores.

• It assumes that createTransaction is sufficiently cheap.
• It assumes that keeping a lock/transaction open is sufficiently cheap.
• In general, it assumes that the caller has the best knowledge for checking

the conditions in the cheapest way possible, which is not necessarily true.
For instance, for one store it might be expensive to calculate ETag but
not the last modified date, whereas it might be the opposite for another.
A certain store might even be able to determine that a condition is met
without retrieving a representation or its metadata (for instance, if its
global last-modified date is not later than the requested one).

2



Approach 2 to conditional requests: passing a validator

uses

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences, ConditionValidator) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation, ConditionValidator) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation, ConditionValidator) : Promise<void>
+ deleteResource(ResourceIdentifier, ConditionValidator) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch, ConditionValidator) : Promise<void>

�interface�
ConditionValidator

+ validate(RepresentationMetadata): boolean

Description

A ConditionValidator is passed to all write methods (and possibly also read)
of ResourceStore. The store is responsible for calling validate at the right
moment, and for aborting the modification if validation fails. The caller is
responsible for writing the validation code.

(The validator argument could be optional; if a store decides to not support
conditional requests, it must throw an error if a validator is passed.)

Analysis

Additional knowledge required by existing components:
• The caller knows how to validate request conditions, given metadata.

When a conditional request arrives, implementers must:
1. call the modification method, passing in the validation code
2. have ResourceStore call the validator at the right time

This comes with a couple of caveats (details in previous section):
• It assumes that metadata is available.
• It assumes that retrieving metadata is sufficiently cheap.
• It assumes that the caller has the best knowledge for checking conditions.
• For every store implementation, it must be tested whether every method

checks the conditions.

3



Approach 3 to conditional requests: passing the conditions

uses

�interface�
ResourceStore

+ getRepresentation(ResourceIdentifier, RepresentationPreferences, Conditions) : Promise<Representation>
+ addResource(container : ResourceIdentifier, Representation, Conditions) : Promise<ResourceIdentifier>
+ setRepresentation(ResourceIdentifier, Representation, Conditions) : Promise<void>
+ deleteResource(ResourceIdentifier, Conditions) : Promise<void>
+ modifyResource(ResourceIdentifier, Patch, Conditions) : Promise<void>

Conditions

+ matchesEtag : string[]
+ notMatchesEtag : string[]
+ modifiedSince: date?
+ unmodifiedSince: date?

+ matches(metadata : RepresentationMetadata): boolean
+ matches(eTag : string?, lastModified : date?): boolean

Description

The Conditions themselves are passed to all write methods (and possibly also
read) of ResourceStore. The store is responsible for validating conditions at
the right moment, and for aborting the modification if validation fails.

If the store knows how to validate conditions, it can use the raw exposed fields
on Conditions. If it does not, it can call matches with both ETag and the last
modified date, or try one of them before the other. Finally, if it knows about
neither ETag nor last modified date, it can simply pass the metadata as a whole.

(The conditions argument could be optional; if a store decides to not support
conditional requests, it must throw an error if conditions are passed.)

Analysis

Additional knowledge required by existing components:
(none)

When a conditional request arrives, implementers must:
1. call the modification method, passing in the validation code
2. have ResourceStore check the conditions at the right time

This comes with a couple of caveats:
• It assumes that the conditions do not change often.
• For every store implementation, it must be tested whether every method

checks the conditions.

4


